
PHYSICAL REVIEW E 67, 016119 ~2003!
Bistable gradient networks. II. Storage capacity and behavior near saturation

Patrick N. McGraw and Michael Menzinger
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 23 May 2002; published 30 January 2003!

We examine numerically the storage capacity and the behavior near saturation of an attractor neural network
consisting of bistable elements with an adjustable coupling strength, the bistable gradient network. For strong
coupling, we find evidence of a first-order ‘‘memory blackout’’ phase transition, as in the Hopfield network.
For weak coupling, on the other hand, there is no evidence of such a transition and memorized patterns can be
stable even at high levels of loading. The enhanced storage capacity comes, however, at the cost of imperfect
retrieval of the patterns from corrupted versions.
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I. INTRODUCTION

In this paper we consider the behavior at high mem
loading of a Hopfield-like attractor network ofN bistable
elements, the bistable gradient network or BGN@1,12#. This
is a sequel to an earlier paper@2# that considered the BGN a
low loading. We compare the BGN with the determinis
Hopfield network~HN! @3–9#, examining the storage capa
ity and other key properties.

To begin, we review the BGN model and establish so
notation. The BGN is described by the coupled differen
equations

dxi

dt
52

]H

]xi
, ~1!

wherexi areN continuous-valued real variables~or compo-
nents of anN-dimensional state vectorx) representing the
outputs of theN nodes of the network, andH is the Hamil-
tonian
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wi j xixj . ~2!

The quantitieswi j are the elements of a symmetric matrix
connection strengths andg is a control parameter determin
ing the overall strength of the coupling among nodes. As
the Hopfield model @3,4#, the connections or synapti
weights are determined by the Hebb learning rule@10#

wi j 5
1

N (
m51

p

j i
mj j

m2
p

N
d i j , ~3!

where theN-dimensional vectorsjm represent a set ofp dis-
tinct memory patternsto be recognized by the network. W
take these patterns to consist of binary elements61 only,
and we assign them random values, thus introduc
quenched disorder. The BGN’s key difference from the H
and from most of its continuous-valued relatives@11# lies in
the presence of the local quartic potential termH0 in the
Hamiltonian, which renders each node bistable.
1063-651X/2003/67~1!/016119~12!/$20.00 67 0161
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The interaction termHint furnishes an input to each nod
given byhi5g(m51

p wi j xj so that the dynamical equation fo
each node is given by

dxi

dt
5xi2xi

31hi . ~4!

The input may also be referred to as a ‘‘magnetic field’’
analogy with Ising spin systems. In the absence of input e
node has two stable fixed points at61, but a nonzero field
shifts the two fixed points. If the critical magnitudehc

52A3/9'0.38 is exceeded then the field is strong enough
overcome the potential barrier in the quartic potential a
there is then only one fixed point.

We define two sets of order parametersmm andbm by

mm[jm
•x5

1

N (
i 50

N

j i
mxi ~5!

and

bm[
1

N (
i 50

N

j i
msgn~xi !. ~6!

mm are inner products or overlaps of the state vector with
memorized patterns, whilebm , the ‘‘bit overlaps,’’ encode
information about sign agreements between the state ve
and the stored patterns. For the purposes of this paper
will for the most part be more interested inbm than inmm ,
so where there is little risk of confusion we will drop th
word ‘‘bit’’ and simply refer tobm as an ‘‘overlap.’’

The degree of loading of the network’s memory can
parametrized by the ratioa[p/N. In the companion pape
@2# we examined the behavior of the BGN in the low-loadi
limit a!1. It was shown that the network can function as
associative memory and correct sign-flip errors in a sto
pattern as long asg. 1

3 . We found that the attractors of th
BGN’s dynamics are readily classified into three categor
that are separated from each other in energy. The low
energy states are thememoryor retrieval states, each of
which corresponds to one of the memorized patterns. In
dition to these there are higher-energy spurious attractor
two types. Themixtureor spin glass stateshave partial over-
laps with several patterns and thus lie close to the subsp
©2003 The American Physical Society19-1
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PATRICK McGRAW AND MICHAEL MENZINGER PHYSICAL REVIEW E67, 016119 ~2003!
spanned by the memory patterns.Uncondensed states, which
have no counterpart in the HN, are states in which none
the fields acting on the nodes are strong enough to cause
flips and the dynamics is therefore dominated by the lo
potential. They have energies per node close to20.25. The
spin glass states are intermediate in energy between
memory states and the uncondensed states. In the ran1

3

<g&1, pattern recognition by the network was found to
highly selective; the input must be close to the stored pat
in order for the pattern to be fully restored. The unconden
states are numerous~of order 2N) and fill most of the con-
figuration space. The memorized patterns and their basin
attraction occupy isolated valleys among these states,
these valleys expand asg increases. Forg*1, on the other
hand, the behavior resembles that of the HN: there are
uncondensed states, and the memory states have large b
of attraction.

In this paper we turn to the case wherep/N is of order
unity. We are interested in the maximum storage capacity
the maximum number of patterns that can be success
stored and retrieved, as well as changes in the netwo
performance as this limit is approached. Earlier work w
small networks@12# suggested that at least under certain c
ditions the BGN could store many more patterns than the
while possessing few spurious attractors. It is known that
Hopfield storage limit ofp'0.14N memory patterns can b
exceeded if a more complicated learning algorithm is u
@9#, but in the BGN case improved capacity is achieved w
the familiar Hebb rule. Since the previous results@1,12# were
obtained with networks much too small to be of practic
interest ~e.g., N55), we now examine larger network
mainly through numerical simulations.~At the end of the
paper we will return briefly to the small-network case.! We
find that the high-loading behavior, like that at low loadin
depends strongly ong. For g*1, a Hopfield-like first-order
phase transition results in the destabilization of all mem
states at a critical value ofa. For g52 this transition occurs
at ac'0.1, compared toac'0.14 for the HN. Forg50.5,
on the other hand, we find that it is possible for the sto
patterns to remain stable even at loading factors ofa'0.3
and higher. Furthermore, there is no sudden blackout;
stead, the performance degrades gradually asa increases.
The price of this high capacity is that the retrieval of t
patterns from corrupted versions may be imperfect.

The remainder of the paper is organized as follows.
Sec. II we discuss in general terms the effects of crosstalk
interference between different stored patterns. It is cross
that is responsible for limitations on storage capacity.
compare the effects of crosstalk in the BGN and the H
This discussion provides a framework for interpreting o
numerical results. In Sec. III we examine numerically t
stability of memory patterns as a function ofa. We find
evidence of a first-order memory blackout phase transitio
the BGN at highg, but not at lowg. In Sec. IV, we examine
the effects of high loading on the basins of attraction for
memory states and on their retrieval from corrupted inp
We see that increasing the loading markedly alters the en
landscape. In Sec. V we comment briefly on the behavio
smaller networks and on the relation between the previ
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small-network results@1,12# and those we have obtained fo
larger networks. We conclude with some discussion of
BGN results and possible directions for further study. W
make some conjectures concerning the performance of
BGN in the presence of stochastic noise.

II. PATTERN RETRIEVAL AND CROSSTALK

In a given statex, the input to thei th node of the network
can be expressed as

hi5g(
j 51

N

wi j xj5g (
m51

p

j i
mmm2g

p

N
xi , ~7!

using the Hebb rule~3! and the definition~5! of mm . In Ref.
@2#, we showed that whena!1 there are stable retrieva
states in whichbn51 for one particularn. For a state in
which thenth overlap is large, we can decompose the field
follows:

hi5gS j i
nmn1 (

mÞn
j i

mmm2
p

N
xi D 5gS Si1Ci2

p

N
xi D .

~8!

We refer to the first term,Si , as the ‘‘signal’’ term and the
second term,Ci , as the ‘‘crosstalk’’ term. In the limitp/N
→0, the mutual overlaps between different patterns is sm
so thatmn!1(nÞm), and the last two terms in Eq.~8! can
be neglected. The signal term is then dominant and there
stable retrieval state given byx5A11gjn with mn

5A11g. We expect this solution to be approximately val
for small but nonzero values ofp/N. For this case, the over
lapsmm(mÞn) behave as Gaussian distributed random va
ables with zero mean and variance 1/AN. Accordingly, the
crosstalk termCi[(mÞnj i

mmm in Eq. ~8!, being a sum ofp
such quantities, is a random quantity with zero mean a
varianceAp/N. The third term, which arises from the sub
traction of the diagonal elements, is of orderp/N and thus is
generally smaller than the crosstalk term. We will neglec
for the moment.

In the absence of crosstalk, a retrieval state is not o
linearly stable~i.e., stable against small perturbations! but,
for g. 1

3 , it is also stable against individual sign flips. Th
latter means that if a retrieval state is corrupted by chang
the sign of one or a small number!N of nodes, then the
dynamics will reverse the flipped sign and restore the p
tern. This happens because, in the absence of crosstalk,
node experiences a fieldgSi5gj i

nmn that has the same sig
as j i

n and forg. 1
3 that field is strong enough to overcom

the potential barrier of the individual node. Now conside
given node~say, thei th node! in the presence of crosstalk
The crosstalk field acting on thei th node may be eithe
aligned with or opposed toxi . If it is aligned, then its effect
on that node is to increase the magnitude ofxi , making it
larger thanA11g. If it is opposed toxi , then its effect is to
decreasethe equilibrium magnitude ofxi . If the crosstalk
term is large enough, then it may be sufficient to overco
9-2
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FIG. 1. A series of remanent overlap histograms for a HN withN52000 nodes, at different values of the loading fractiona[p/N. When
the critical loadingac>0.148 is exceeded, the strong peak atbr.0.95 decays and another peak appears atbr'0.3.
ly

e

uc
th

t

s
m

he
ow

of

er
.

he

ot
ble
us,
dy-
all.
is

th,
. In
ng

ol-

e a
e

an
final
the local potential barrier and reverse the sign ofxi , thus
introducing a sign error into the pattern. This will occur on
if

Ci1Si,2
2A3

9g
.

By contrast, in the Hopfield model a sign error is introduc
if

Ci1Si,0.

Thus the relative strength of crosstalk required to introd
sign errors is greater for the BGN than for the HN, and
discrepancy is greatest for small values ofg. One might
expect that this would make the BGN less vulnerable
crosstalk~and the memory states more stable! than the HN,
especially at lowg, but this is not a foregone conclusion a
the BGN’s dynamics include mechanisms that tend to a
plify small initial overlaps@2# and could conceivably also
amplify crosstalk. Our numerical results confirm that t
BGN is in fact less prone to crosstalk-induced errors at l
values ofg, but not at high values.

If

2
2A3

9g
,Ci1Si,

2A3

9g
,

01611
d

e
e
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the crosstalk will not be strong enough to reverse the sign
xi if initially xi is correctly aligned withj i

n , but it will none-
theless destroy the stability against a sign flip. In oth
words, if xi is initially misaligned, it will not be corrected
We may say that the node is ‘‘bistabilized’’ but not destabi-
lized. ~Such an effect cannot occur in the HN where t
nodes are not individually bistable.! Since the crosstalk is
random, it will in general bistabilize some nodes and n
others, with the result that the memory state will be sta
against sign flips of certain nodes but not of others. Th
even though a memory state may be linearly stable, the
namics may only be able to correct some sign errors, not
This contrasts with the low-loading case where crosstalk
negligible and there is a single threshold coupling streng
g5 1

3 , above which any single sign error can be corrected
general, crosstalk results in nonuniform behavior amo
nodes, including different magnitudes ofxi for different i.

III. STABILITY OF THE MEMORY STATES AND
REMANENT OVERLAP

To examine the stability of the memory states, we f
lowed a procedure similar to that of Ref.@9#. Using an en-
semble of realizations of the random patterns, we mad
number of trials in which the network was initialized to th
statex5jn for some patternn. The initial bit overlapbn was
thus equal to 1. We then allowed the state to evolve until
attractor was reached. In each case we measured the
9-3
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FIG. 2. Remanent overlap histograms for the Hopfield network below the critical loading~left column! and above~right column!,
showing finite-size effects. The transition becomes sharper asN increases.

FIG. 3. Remanent overlap histograms for the BGN withg52 show evidence of a first-order transition at 0.9,ac,0.11. Note the
similarity with Fig. 2.
016119-4
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BISTABLE GRADIENT NETWORKS. II. STORAGE . . . PHYSICAL REVIEW E 67, 016119 ~2003!
energy as well as the bit overlap between the initial and fi
states, to which we refer as theremanentbit overlapbr . We
then constructed histograms showing the probabilitiesP(br)
for br falling in intervals of width 0.05. Each of the histo
grams discussed in this section represents an ensemble
least 200 initial conditions. If the memory state is entire
stable, as is the case at very low loading, then after the
namics converges the final bit overlap will still be equal to
For higher loading, however, the crosstalk fields may int
duce sign errors so thatbr,1.

A. HN and BGN with high g

First consider the case of the HN. Figure 1 shows a se
of P(br) histograms for the HN at different values ofa
5p/N. ~The data here are our own, but the results are co
parable to those given in Ref.@9#. We include them for com-
parison with BGN results.! At lower levels of loading,
crosstalk introduces few errors, sobr.0.95 in the large ma-
jority of cases. However, asa increases beyond the critica
valueac'0.148, the high-br peak of the distribution begin
to vanish and a second, broader peak begins to grow in
vicinity of br'0.3. The states in the second peak are s
glass states. As shown in Fig. 2, this transition becom
sharper with increasing network size, and finite-size sca
analysis shows behavior characteristic of a first-order ph
transition in the thermodynamic limit@9#. In the limit N
→` the associative memory fails suddenly as the criti
loading is exceeded—the remanent overlap drops abru
from near 1 to 0.3. This nonzero value of the remanent ov
lap above the critical loading was noted in Ref.@9# and at-
tributed to replica symmetry breaking, as the replica sy
metric theory predicts thatbr should drop to zero above th
phase transition. This phenomenon is related to the non
remanent magnetization of a spin glass@13#.

In the BGN withg52, a similar transition evidently oc
curs atac'0.1. As evidence, in Fig. 3 we show two series
histograms at increasingN, one below the suspected trans
tion and one above. As in the HN case, the transition gro
sharper with increasing network size. Below the critical loa
ing, the high-b peak remains robust asN increases, while
above the critical loading the high-b peak shrinks with in-
creasing network size and the low-b peak grows. Two quan
titative differences are that the critical loadingac is lower in
the BGN case,ac'0.1, while the average remanent overl
above the critical loading is higher, near 0.45.

The first-order nature of the transition is confirmed
examining the energies of the final states. These energies
the overlaps are shown in a scatter plot in Fig. 4~a!. The spin
glass states associated with the low-br peak are clustered a
energies below those of the retrieval states. The gap in
ergy between these two clusters corresponds to the la
heat of the phase transition.

B. BGN at low g

For g50.5, in contrast tog52, the BGN’s behavior dif-
fers markedly from that of the HN. A series ofP(br) histo-
grams for different values ofp/N is shown in Fig. 5. Two
features are evident. First, the stored patterns remain s
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with few errors even up to high levels of storage,a50.3.
Second, there is no evidence of a discontinuous memory
ure; rather, the retrieval quality as measured bybr appears to
degrade continuously asa increases. No second peak a
pears in the histograms; instead, the high-b peak first spreads
and then begins to drift downward as errors accumulate.

At an intermediate valueg51 theP(br) histograms~Fig.
6! suggest a first-order transition, although the evidence
less pronounced than in theg52 case. A second peak ap
pears above the transition, and the high-br peak shows clear
signs of shrinking asN increases, but the tails of the tw
peaks overlap substantially. The greater overlap between
peaks comes about for two reasons. First, the high-br peak
above the critical loading is broader than in theg52 case.
Second, the remanent magnetization is much higher~i.e., the
drop in br at the critical point is much smaller!. The latent
heat is also much smaller, as can be seen from the scatte
of the energy@Fig. 4~b!#. The critical loading, or storage
capacity, is approximately 0.17, higher than forg52 and
higher than for the HN.

IV. ATTRACTORS, BASINS, AND THE ENERGY
LANDSCAPE AT HIGH LOADING

In the preceding section, we examined the trajectories
initial conditions corresponding to memorized patterns a

FIG. 4. Scatter plots of final energies and remanent overlaps
trajectories starting from memory patterns, for BGN above criti
loading. ~a! BGN with N52000, g52, anda5p/N50.11. Note
that the overlap is strongly correlated with the energy and there
gap in energy between the high- and low-br states. This gap repre
sents the latent heat of the phase transition.~b! BGN with N
52000, g51, and a50.2. As in theg52 case, the energy is
strongly correlated withbr , but the high and low groups overla
and the energy difference is smaller.
9-5
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FIG. 5. Remanent bit overlap histograms for the BGN withN51000 andg50.5, at a series of increasing values of the loading fac
a. Few errors occur even ata50.3, and the memory degrades gradually rather than abruptly with increasinga.

FIG. 6. Remanent overlap histograms for BGN withg51 are consistent with a first-order transition at 0.16,ac,0.18.
016119-6
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FIG. 7. Energy histograms ofP(E/N) for attractors reached from random initial states of the HN withN51000 nodes. As the numbe
p of stored patterns increases, the peak atE/N520.5 corresponding to the retrieval states shrinks~and also spreads slightly! while the spin
glass states drift downward in energy until they are lower than the retrieval state energies.
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determined whether these trajectories remain close to the
tern or move away from it. Such experiments, howev
probe only one aspect of network performance. We are in
ested not only in the stability of memory states but also
the sizes of their basins of attraction. The function of as
ciative memory depends on the ability of the dynamics
correct partially corrupted patterns. More generally, we
interested in the evolution of the energy landscape with
creasinga. To address these issues, we performed two a
tional sets of numerical experiments. First, we examined
attractors reached from a large number ofrandominitial con-
ditions to obtain a uniform sampling of the phase space
a broad picture of the energy landscape. Second, we ex
ined the fate of initial conditions at specified Hamming d
tances from memory patterns. The latter set of experime
probes the landscape in the vicinity of the memory sta
Results of similar experiments were given in Ref.@2# for the
case of low loading.

A. Evolution of the energy landscape: attractors reached from
random initial states

In the case of the HN, it is known that in the thermod
namic limit the memory states are the lowest-energy st
for a,0.05, while for higher values ofa spin glass states
arise which have lower energies. Up toac'0.148 the
memory states remain local minima of the energy ev
though they are not the global minima. Aboveac they cease
01611
at-
r,
r-

n
-

o
e
-
i-
e

d
m-
-
ts
s.

es

n

even to be local minima and therefore become unstable@9#.1

The drop in energy from the memory states to the spin g
states atac is the latent heat. One way to observe the ev
lution of the energy landscape is to examine the attrac
reached from an ensemble of random initial conditio
which effectively samples the configuration space. Figu
7–9 show histograms for the energies of attractors sam
in this manner. In each case, we sampled a total of at l
200 random initial conditions with several realizations of t
random patternsjm. In Fig. 7, for the HN, we can see that a
low loading the attractors are separated into two groups,
retrieval states atE/N520.5 and spurious states at a ran
of higher energies. The probability of retrieving a memo
state from a random initial condition is high. With increasin
a, the spurious states move to lower energies until they
below the memory states. At the same time, their basins
attraction take up a larger portion of the configuration spa
as is apparent from the growing size of the spin glass pea
the histogram and the shrinking size of the retrieval st
peak. Figure 8 shows that for the BGN withg52 the evo-
lution is qualitatively similar. In Fig. 9, forg50.75, we ob-
serve that an additional effect of high loading is to desta
lize the uncondensed states. At low loading, the unconden
states dominate the configuration space—almost all rand

1For a schematic illustration of the evolution of the energy lan
scape, see Fig. 2.18 of Ref.@7#.
9-7
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FIG. 8. Attractor energies from random initial conditions for BGN withg52. Qualitative behavior resembles that of the HN as sho
in Fig. 7. One difference is that the spreading of the retrieval state energies with increasing loading is more pronounced.
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initial conditions land on an uncondensed state, as was n
in Ref. @2#. The other two types of state begin to show th
presence as the loading is increased, while the unconde
states eventually disappear.

B. Retrieval of patterns from corrupted versions

To obtain information about the landscape in the vicin
of the memory states and about the shapes of their basin
attraction, we examined the fates of initial conditions th
were not random but rather at specified initial overlaps w
particular stored patterns. As in Ref.@2#, these initial con-
figurations were generated by starting with a particu
‘‘target’’ pattern and flipping the signs of a specified numb
of randomly chosen nodes. For each value of the initial ov
lap binit , we generated an ensemble of initial conditions
several different realizations of the random set of mem
patterns. We then evolved these states until the dynam
converged, and evaluatedbf inal , the final overlap with the
target pattern, for each trajectory. Ifbf inal51, this signifies
that all signs that were initially flipped have been correc
and the target pattern has been retrieved perfectly. Ifbinit
,bf inal,1, then the pattern has been retrieved imperfec
The final state is closer to the stored pattern, but not all er
have been corrected. Ifbinit.bf inal , then the trajectory has
moved farther away from the stored pattern. As discusse
Sec. II, the ability of the network to correct sign errors d
pends on the competition among the signal, the cross
and the local potential. The initial states currently discus
have at least a moderately large overlap with the target
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tern, resulting in a signal, and random overlaps with
other memory patterns, resulting in crosstalk.

Consider now the HN. At low loading, there is very littl
crosstalk. The crosstalk term is typically of orderAp/N. If
the HN is set in an initial condition whose overlap with th
target patternj is binit.Ap/N, then most nodes experience
net field that is aligned with the target pattern. Nodes that
initially misaligned with the target state (xi52j i) will tend
to change their signs and align withj i . Each node that re-
aligns in this way increases the value ofb and thus increase
the strength of the signal acting on the remaining nodes. A
result, even if in the initial state some fraction of the nod
experience a net field opposed toj i , eventually the growing
signal may overcome the crosstalk and correct those node
well. Therefore for low loading, as long as the initial sta
hasbinit.Ap/N, the probability of completely retrieving the
target pattern is close to unity. As the loading ratioa in-
creases, however, the typical crosstalk becomes stronger
a higher signal is required to overcome the crosstalk no
Therefore sign errors are not likely to be corrected unless
initial overlap is above a threshold, which grows higher w
increasinga. If the crosstalk is too large, then some sig
that are initially aligned with the pattern may be flipped, a
the state may move away from the target pattern instea
toward it. Each node that flips out of alignment with th
target pattern reduces the size of the overlap and hence o
signal, which makes other nodes more susceptible
crosstalk-induced errors, and a cascade of errors can o
The critical loadingac is the level at which even a state wit
9-8
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FIG. 9. Attractor energies from random initial conditions for BGN withN51000 andg50.75. For low loading, the uncondensed sta
~with energyE/N'20.25) fill most of the configuration space. The other two peaks in the histogram are very small. As the l
increases, however, the uncondensed states disappear. As in all cases, the ‘‘spin glass’’ peak grows larger with increasinga and shifts
downward in energy.
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binit51 becomes unstable against such a cascade of er
Figure 10~a! shows a scatter plot ofbf inal vs binit for a

HN slightly below critical loading. There is a threshold ove
lap for retrieval. Ifbinit.0.5 the signal is strong enough t
correct errors and the majority of trajectories flow towar
the target pattern. Forbinit,0.5 the majority of trajectories
move instead away from the target pattern. Asa increases,
the threshold value ofbinit for retrieval increases until atac

it reaches 1. The plot in Fig. 10~a! is for a network withN
52000; experiments with networks of different sizes rev
that the retrieval threshold becomes sharper asN increases.

In the BGN, on the other hand, the dynamics of er
correction is more complicated due to the local potential.
strong couplingg*1, the potential barriers against sign flip
are less important than at weak coupling. As a result
BGN in this regime behaves in many respects like the HN
is not surprising, then, that the scatter plot ofbf inal vs binit

for a BGN withg52 slightly below its critical loading@Fig.
10~b!# appears qualitatively similar to the corresponding F
10~a! for the HN. There is a threshold~approximatelybinit

50.6) below which the probability of fully retrieving the
target pattern drops sharply. Above this threshold, the sig
is evidently strong enough to correct most sign errors. A k
difference, however, is that even below this threshold
averagebf inal is larger thanbinit . This means that the ma
jority of trajectories move toward the target pattern rath
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than away from it, but only some of the sign errors are c
rected, not all.

In the case of the BGN withg50.5, the local potential
barriers are important, and interesting dynamics results fr
the competition among the signal from the target pattern,
crosstalk from other patterns, and the local potential. In
a!1 case@2#, sign errors can be corrected only if the sign
is strong enough to overcome the local potential barriers,
therefore there is a threshold value of the initial overl
which is much larger thanAp/N. For the caseN51000, p
55, for example, we find that this threshold is appro
matelybinit50.5. Forbinit.0.5 there is a large probability
that the target pattern is retrieved perfectly, while forbinit
,0.5 there is a large probability that the network will b
stuck in an uncondensed state withbf inal5binit . In the in-
termediate range 0.4,binit,0.6, there is also a significan
probability that the trajectory is attracted to an asymme
spurious state in whichbf inal is large but not unity and there
are larger than random overlaps with one or more ot
memory patterns. This behavior is illustrated by the sca
plot of Fig. 11~a!. As the loading increases@Figs. 11~a!–
11~d!#, something surprising happens: at first, the basins
attraction of the memory statesexpandslightly, contrary to
what one would expect from the HN. The frontier of th
uncondensed states is pushed back to lower values ofbinit .
For p550, or a50.05 @Fig. 11~d!#, almost all states with
binit.0.1 undergo some motion toward the target patte
9-9
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even if the pattern is not retrieved perfectly. Asp increases
further, the bf inal vs binit plot preserves the approxima
shape of Fig. 11~d!.

The dynamics of retrieval and error correction for t
BGN with weak coupling and high loading is evidently qui
different from that of the HN. In thea50.05 case of Fig.
11~d!, bf inal is always 1 if bint51, which means that the
memory state is stable. However, it is retrieved only imp
fectly when sign errors are introduced: ifbinit,1 thenbinit
,bf inal,1. This indicates that some nodes remain bista
and cannot be corrected. If the initial state is close to
target pattern, then the majority of errors are corrected,
that fraction decreases with decreasingbinit . Such a partial
correction of errors does not often occur in the HN case
the latter case, an initial condition either flows all the way
the retrieval state or moves away from it toward anot
attractor. The retrieval state may itself have a small num
of errors due to crosstalk, but the presence of these er
does not depend on the initial state. The energy landscap
the HN in the neighborhood of a memory state appare
has the shape of a smooth basin—once the basin is ent
the trajectory usually runs without obstruction to the attrac
at the bottom. For the weakly coupled BGN, on the oth
hand, the landscape appears to have the structure of a ‘
nel,’’ @16–18#, i.e., a sequence of local minima at decreas
energies, with low potential barriers separating each s
from the next. There is a region of configuration space t
has an overall tilt toward the retrieval state, but in whi

FIG. 10. Scatter plots ofbf inal vs binit for networks slightly
below critical loading. Points showbf inal for an ensemble of initial
conditions with specifiedbinit . The average ofbf inal is shown by
the solid curve. The dotted diagonal linebf inal5binit is drawn for
comparison: points above the line havebf inal.binit . ~a! HN with
N52000, p5260. ~b! BGN with N52000, g52, andp5170. In
both cases, the retrieval quality as measured bybf inal drops sharply
for binit,0.6. For the BGN, however, the averagebf inal is always
greater thanbinit .
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there are many local minima which may trap the trajecto
before it reaches the retrieval state. This is illustrated sc
matically in Fig. 12. Funnel-shaped energy landscapes w
first suggested in the context of protein folding dynamics

V. A COMMENT ON SMALL NETWORKS

So far, this paper and the companion paper@2# have fo-
cused mainly on large networks ofN51000 or more. How-
ever, some applications of neural network algorithms to
botics and other areas make use of networks of only 20
100 nodes. Experimental studies of BGN-like chemical re
tor networks@14,15# used fewer than ten nodes. The curre
work on the BGN was inspired in part by results suggest
that the BGN could store many more patterns than the H

FIG. 11. Scatter plots showing pattern retrieval by the BG
with N51000, g50.5. As in Fig. 10, the solid curve shows th
average value ofbf inal . Uncondensed states lie on the linebf inal

5binit : no sign flips occur andb maintains exactly its initial value.
~a! p55, ~b! p510, ~c! p520, and~d! p550.

FIG. 12. Schematic picture of a funnel, or bumpy basin. M
trajectories travel some distance toward the global minimum~rep-
resenting, for example, a memory state! but become trapped in a
local minimum~a state with some errors! before reaching the bot
tom.
9-10
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TABLE I. Properties of small networks.

N55, p55 N510, p55 N510, p510 N515, p510
a Vspur f stable Vspur f stable Vspur f stable Vspur f stable

0.25 0.38 0.87 0.96 1.00 0.85 0.92 0.97 0.9
0.5 0.10 0.68 0.64 0.91 0.61 0.51 0.86 0.6
0.75 0.06 0.49 0.51 0.75 0.56 0.32 0.83 0.3
1.0 0.05 0.37 0.49 0.62 0.53 0.23 0.82 0.2
1.5 0.08 0.37 0.51 0.47 0.53 0.16 0.80 0.1
2 0.6 0.34 0.43 0.40 0.51 0.15 0.85 0.11
~HN! 0.03 0.34 0.38 0.48 0.50 0.16 0.75 0.15

N520, p55 N520, p510 N550, p55 N5100, p55
a Vspur f stable Vspur f stable Vspur f stable Vspur f stable

0.25 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.0
0.5 0.92 0.99 0.95 0.74 0.99 1.00 1.00 1.0
0.75 0.78 0.93 0.92 0.44 0.78 1.00 0.84 1.0
1.0 0.71 0.86 0.92 0.26 0.61 1.00 0.55 1.0
1.5 0.71 0.71 0.91 0.16 0.57 0.98 0.46 1.0
2 0.74 0.62 0.93 0.11 0.57 0.97 0.46 1.00
~HN! 0.47 0.78 0.91 0.20 0.34 1.00 0.34 1.00
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with fewer spurious attractors@12#. The latter results were
inferred from a few selected cases using very small n
works, and so we attempted to test the genericness of t
results for a variety of small networks as well as for larg
networks.

It should be noted that with very small networks, there
great fluctuations in properties depending on the partic
set of memory patterns chosen, as it is impossible to ign
the mutual correlations among patterns. Results for the m
mum storage capacity of a network are well defined only
the thermodynamic limitN→`, and for smallN even an HN
may in particular cases be able to store more than 0.1N
stable patterns. For these reasons one cannot draw s
general conclusions about storage capacity based on s
networks alone, but it is nonetheless instructive to ma
some comparative studies of pattern stability in small n
works. For several small values ofN and p, we generated
random sets of stored patterns and tested their stability, u
the HN and the BGN at several different values ofg. We
counted the average fraction of memory patterns that w
stable,f stable.2 In addition, we estimated the fraction of con
figuration spaceVspur occupied by spurious attractors by fo
lowing the trajectories of random initial conditions inside t
hypercubeuxi u,2. These results are collected in Table I.
all cases the results were averaged over at least 100 se
randomly generated patterns. In generating random se
patterns, we did not eliminate cases in which two or m
patterns are identical. The results show that, contrary to
selected examples discussed in Refs.@1# and@12#, the spuri-

2In the thermodynamic limit there is an approximate permutat
symmetry among the memory patterns, so that, in general, eithe
will be stable or none will be. By contrast, in small networks it
not unusual for some memorized patterns to remain stable w
others are not.
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ous attractors donot generically occupy much less configu
ration space in the BGN than in the HN~in fact, they nor-
mally occupy more, especially at low values ofg). However,
for the most part the percentage of memory patterns that
stable is larger in the BGN than in the HN as long asg
&1. As with larger networks, the BGN becomes most sim
lar to the HN wheng.1, while lowerg leads to increased
pattern stability. The increased pattern stability at lowg is
associated, however, with smaller basins of attraction for
memory states and therefore with a greater volume of ph
space occupied by spurious states.

VI. DISCUSSION

We have studied the properties of the BGN at hi
memory loadinga. Our results can be summarized as fo
lows: For high values ofg, such as 2, there is a first-orde
transition similar to that of a HN. Forg52, the transition
occurs at a critical loadingac'0.1, which is lower than the
critical loading ofa'0.148 for the HN. Asg decreases, the
critical loading increases and the phase transition evide
becomes weaker and eventually disappears. Forg51 the
critical loading is apparentlyac'0.17 ~higher than for the
HN! and the phase transition is much less pronounced for
finite-size networks we have studied. Forg50.5 there is no
evidence of a phase transition at all and patterns are st
with very few errors up toa'0.3.

A phenomenon that occurs in the BGN much more than
the HN is the partial retrieval of a pattern, whereby the d
namics corrects some sign errors in a pattern without corr
ing all of them. This is especially noticeable in the case
low g and higha. This phenomenon suggests that in th
case the energy landscape in the vicinity of a stored pat
has the shape of a funnel rather than a smooth basin o
traction. By a smooth basin of attraction, we mean a c
nected neighborhood that is sloped toward an attractor an

n
all
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9-11



ra
y
to
c
re
a
a
ba
he
i

ro
fir

ca
o-
ou
th

-
n-
in

ject
is

rn

es-

of
tui-
ics

ng
s-

PATRICK McGRAW AND MICHAEL MENZINGER PHYSICAL REVIEW E67, 016119 ~2003!
which there are few local minima that might obstruct a t
jectory once it has begun to flow toward the attractor. B
funnel we mean a region with an overall average slope
ward an attractor, which, however, contains many other lo
minima in which the trajectory might become stuck befo
reaching the bottom. The presence of these local minim
due to the bistability of the individual nodes and the loc
potential barriers against spin flips. These same potential
riers are also responsible for stabilizing the patterns. T
reduce the likelihood of crosstalk noise inducing an error
a pattern, but they can also inhibit the correction of an er
that is present initially. Funnel-shaped landscapes were
examined in the context of protein folding dynamics@16,17#.
It was suggested that at a finite temperature such a lands
would allow the protein dynamics efficiently to find the gl
bal minimum of energy in spite of the presence of numer
local minima separated by potential barriers. If indeed
landscape of the BGN at lowg forms a funnel, then it is
possible that the introduction of some stochastic noise~i.e.,
on
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finite temperature! could improve pattern retrieval by allow
ing trajectories to jump over the comparatively small pote
tial barriers into lower-energy minima, just as in the prote
case. The effect of stochastic noise could be a fruitful sub
for further study. An interesting question is whether there
an optimum level of noise which would improve the patte
retrieval ability of the BGN with lowg while at the same
time maintaining the larger storage capacity. Intriguing qu
tions remain concerning the dynamics of the BGN at lowg.
The apparent initial expansion of the basins of attraction
the memory states with increasing loading is counterin
tive, and the patterns visible in Fig. 11 hint at some dynam
that is not yet fully understood.
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